
Abstract. The multireference generalization of the
M�ller-Plesset perturbation theory employing multiple
partitionings of the total Hamiltonian is revised in order
to avoid spin contaminations and non-physical depen-
dence of the results on the z projection of the total
spin. The novel formulation retains the main advantages
of the original approach (computational simplicity,
numerical stability, uncontracted treatment of the refer-
ence-space part of wavefunctions, size consistency of
second-order results for complete model spaces). The
results of pilot calculations on the transitions between
electronic states with di�erent spin multiplicities in CH2,
SiH2, ScH, Sc2 and Cu2 are reported.
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1 Introduction

The multireference perturbation theory (MRPT) is
usually considered as one of the most promising
approaches to molecular electronic structure calcula-
tions, and in particular as a potentially powerful tool for
the study of excited states and large deviations from
equilibrium geometries [1±6]. In a perfect agreement
with the chemical intuition, the MRPT may take
advantage from the separation of the electron correla-
tion e�ects into internal (non-dynamic) correlations
associated with the interactions of model-space con®g-
urations and remainder (dynamic) e�ects arising from
the couplings between the model and outer spaces [7]. In
contradistinction to the non-degenerate multicon®gura-
tional perturbative schemes, which follow the so-called
``diagonalize-then-perturb'' strategy [8±12], the MRPT-
based methods are capable of describing the interfer-

ences between dynamic and non-dynamic correlations
properly [7, 13].

The fundamental problem of MRPT treatment of
molecular electronic states arises from the di�culties in
combining numerical stability (especially for large model
spaces) and satisfactory low-order results with the strict
size consistency. The conventional Bloch-Brandow
MRPT [14±16], being size-consistent for complete model
spaces, su�ers from instabilities owing to nearly zero
energy denominators in the presence of intruder states
[5, 17, 18]. The elimination of small denominators by
applying appropriate shift techniques [3, 4, 6, 19±21]
restores the numerical stability at least in low orders but
usually destroys the size consistency [6, 13, 21].

In a recent publication [22] we proposed a state-se-
lective second-order MRPT method based on the si-
multaneous use of several partitionings of the total
Hamiltonian into a one-electron zero-order part and a
perturbation (multi-partitioning MRPT). This method
can be considered as a consistent generalization of the
famous M�ller-Plesset many-body perturbation theory
[23] for multidimensional model spaces. It combines
numerical stability in the presence of intruders with strict
size consistency, provided that complete model spaces
are used. A series of numerical tests demonstrated its
accuracy in excited-state calculations in rather compli-
cated situations.

A serious de®ciency of this approach consists in an
incorrect treatment of spin eigenfunctions. Even if spin-
restricted spin-orbital bases are used, the zero-order
operators de®ned in [22] are generally not spin sca-
lars. This can result in spin contaminations of the
eigenvectors of e�ective Hamiltonians and non-physical
dependence of the energy estimates for the states with
non-zero spin on the choice of the reference z-axis.
Therefore, the method is not well suited for the study of
electronic states with di�erent spin multiplicities.

In this paper we reformulate the state-selective mul-
tipartitioning MRPT in a spin-adapted manner, intro-
ducing the sets of zero-order operators commuting with
the total spin. Several applications to molecular elec-
tronic states with di�erent spin values are presented and
discussed.
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2 Theory

Let us ®rst recall the general principles of the multipar-
titioning multireference perturbation theory [22, 24, 25].
We start with splitting the total space L of N-electron
wave functions into the model space LP with its projector
P and the outer space LQ projected by Q � 1ÿ P and
choosing an orthonormal basis fjJig in
LP �P �

P
J jJihJ j�. An e�ective Hamiltonian ~H acting

in LP and the associated wave operator X should satisfy
the generalized Bloch equation [16]

XP ~H � HXP �1�
Provided that the intermediate normalization of X [16]
is accepted, this equation can be written in the form

~H � PHXP �2�
QHXP � QXPHXP �3�
The use of intermediate normalization, which implies the
non-hermiticity of ~H , is not compulsory; an alternative
formulation of the multipartitioning MRPT yielding a
Hermitian e�ective Hamiltonian is given in the Appen-
dix.

To construct ~H and X perturbatively, we split
Eqs. (2, 3) into projections on the basis functions

~H jJihJ j � PHXjJihJ j �4�
QHXjJihJ j � QXPHXjJihJ j �5�
and de®ne, for each projection separately, a partitioning
of the total Hamiltonian H into the zero-order part
H0�J� and the perturbation V �J�
H � H0�J� � V �J�; H0�J�P � PH0�J� 8 J : jJi 2 LP �6�
Substituting the partitionings in Eq. (5), one gets

Q�X;H0�J��jJihJ j � Q�V �J�Xÿ XPV �J�X�jJihJ j : �7�
At present we shall assume that each operator H0�J�
commutes with the corresponding one-dimensional
projector jJihJ j:
H0�J�jJihJ j � jJihJ jH0�J� � jJieJ hJ j : �8�
Then the Liouvilleans in Eq. (7) are easily inverted and
after the summation over the model states we obtain

QXP �
X

J

Q
eJ ÿ H0�J� �V �J�Xÿ XPV �J�X�jJihJ j : �9�

Iterating Eq. (9) from X�0� � P and regrouping the terms
according to their overall power in V �J��jJi 2 LP �, one
arrives at the recursive formula for perturbative correc-
tions

X�n� �
X

J

Q
eJ ÿ H0�J�

� V �J�X�nÿ1� ÿ
Xnÿ1
m�1

X�mÿ1�PV �J�X�m�
 !

jJihJ j :

�10�
Equation (4) readily provides the corresponding expan-
sion of ~H

~H �0� �
X

J

jJieJ hJ j �11�

~H �n� �
X

J

PV �J�X�nÿ1�jJihJ j : �12�

Taking into account that PV �J�Q � PHQ 8 J : jJi 2 LP ,
at second order we get

~H �2� �
X

J

PH
Q

eJ ÿ H0�J�H jJihJ j : �13�

The extension of the present perturbative approach to a
more general class of zero-order operators, which do not
satisfy Eq. (8), is rather straightforward. In this case the
explicit recursive formulas (9, 10, 12) are replaced by
recursive commutator relations. Provided that a matrix
or second quantized representation of the involved
operators is used, these relations are readily transformed
into systems of linear equations for matrix elements or
second-quantization amplitudes.

Now we turn to the state-selective formulation of the
theory for a many-electron system, assuming for in-
stance that we are interested in a single-target state jwli.
Suppose that the spin-orbital set is obtained from an
orthogonal set of space orbitals; the spin orbitals will be
labeled by the indices of their space parts �r; s; t; . . .� and
spin factors �r; s; . . . � a or b�. The model space is de-
®ned by the choice of its basis composed of Slater de-
terminants. The zero-order operator H0�J� corre-
sponding to the model determinant jJi is speci®ed as

H0�J� �
X

sr
�sr� occupied

in jJi

e�sraysrasr �
X

ts
�ts� empty
in jJi

eÿtsaytsats �14�

[14]. The entities e�sr
� 	

and eÿsr
� 	

are the Koopmans-like
spin-orbital ionization potentials (IP) and electron
a�nities (EA) with opposite signs, de®ned with respect
to the multicon®gurational state jPwli (i.e. the target
vector of ~H ):

e�sr � Pwl Hj jPwl

D E
ÿ Pwl aysrHasr

�� ��Pwl

D E
nl

sr

ÿ �ÿ1 �15�
eÿsr � Pwl asrHaysr

�� ��Pwl

D E
1ÿ nl

sr

ÿ �ÿ1ÿ Pwl Hj jPwl

D E
:

�16�
Here Pwl

�� E
is supposed to be normalized and

nl
sr � Pwl aysrasr

�� ��Pwl

D E
�17�

are spin-orbital occupation numbers. It should be
underlined that the dependence of the zero-order
operators on an eigenvector of the operator ~H , which
should be determined, suggests the use of self-consisten-
cy principle in practical implementations of the theory.

Introducing the spin-orbital particle and hole Fock
operators

f�sr;tr � aysr atr;H� � ; �18�

fÿsr;tr � ÿasr aytr;H
h i

; �19�
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one can write down the de®nitions (15±16) in the form

e�sr � Pwl f�sr;sr
��� ���Pwl

D E
nl

sr

ÿ �ÿ1
; �20�

eÿsr � Pwl fÿsr;sr
��� ���Pwl

D E
1ÿ nl

sr

ÿ �ÿ1
: �21�

The energy denominators appearing in the expansion
(10) will always be composed of the di�erences between
IP-like and EA-like entities, in a strict analogy with the
conventional (single-reference) Mùller-Plesset perturba-
tion theory. Note that this analogy does not hold for the
multicon®guration perturbation theories employing any
common set of orbital energies and can be restored only
by introducing appropriate denominator shifts [6].

Further, the e�sr and eÿsr values are separable with
respect to the fragmentation of the many-electron sys-
tem provided that the model space is complete and no
orbital can be delocalized between separated fragments.
As has been shown in [22, 24], this feature ensures the
separability and therefore the size consistency at least for
the second-order results.

Note that the e�sr values are not de®ned for secondary
spin orbitals; similarly, no EA-like entity can be asso-
ciated with a core spin orbital. However, this does not
give rise to any problems since such values do not enter
the expressions for perturbative corrections. For rea-
sonable choices of a model space, the di�erences e�sr ÿ eÿts
for any core or active spin orbital �sr� and any active or
secondary spin orbital �ts� are not expected to be small
or positive, and ill-de®ned energy denominators cannot
appear at any order. It is worth discussing the poten-
tially dangerous situation when the occupation number
of an active spin-orbital approaches 0 (or 1). Taking into
account the peculiar importance of double (rather than
single) excitations to correlating spin orbitals [27], one
realizes that the annihilation of one electron on an early
empty (correlating) spin-orbital normally yields a highly
excited ionic wavefunction. The associated e�sr value
should be very low (see numerical illustrations in Sect. 3
and [22]), giving rise to large negative energy denomi-
nators and ensuring the smallness of corresponding
perturbative corrections. This result should be consid-
ered as reasonable because no correction of this type
appears for purely empty (secondary) spin orbitals.
Similarly, one should expect to obtain small contribu-
tions from excitations to almost ®lled orbitals charac-
terized by rather high EA-like energies.

It should be underlined that the elimination of small
denominators is not su�cient to ensure the convergence
of perturbative expansions. For large complete model
spaces the choice (14±16) results in strong diagonal per-
turbations, which enter the numerators of ~H �n�; n � 3 and
can induce the divergence in higher orders. As has been
pointed out in [22], in such situations the convergent an-
alogues of expansions (9±12) can be obtained in the frame
of intermediate Hamiltonian theory [6, 19] via replacing
the starting Bloch equation (1) by the so-called shifted
Bloch equation [21, 26]. The price to be paid is the loss of
information on all the states except the target one and the
di�culties in achieving a strict size consistency in the third
and higher ®nite orders. With a reasonable choice of shift
operator, this transformation does not a�ect ~H �n�; n � 2.

Since we are concentrating on the second-order method,
we prefer to skip the detailed description of the interme-
diate Hamiltonian form of the multipartitioning theory,
which can be found elsewhere [22].

One of the main drawbacks of the spin-orbital for-
mulation of the method presented above consists in an
incorrect treatment of spin eigenstates. If the projection
of the total spin on z axis �Sz� di�ers from zero, then
e�sa 6� e�sb and eÿsa 6� eÿsb. This leads to spin contaminations
of the perturbed wave vector. Moreover, the calculated
energies for the states with non-zero spin will depend on
the particular choice of Sz.

Another logical and practical aspect of this problem,
which apparently blocks the passage from the determi-
nant basis to that of spin-adapted con®guration state
functions (CSF), manifests itself even for Sz � 0 states.
The second-order energy denominator associated with a
substitution operator jJi ! jAi; jJi 2 LP ; jAi 2 LQ de-
pends explicitly on its spin part, as is illustrated by the
following example. Consider a model-space Slater de-
terminant jJi � aysaaytbjcorei and two outer space deter-
minants, jAi � aytbaynajcorei and jA0i � aytaaynbjcorei, and
suppose that the z projection of the total spin is zero (i.e.
e�sa � e�sb � e�s etc.). Since the space parts of jAi and jA0i
coincide, these determinants should enter the spin-
adapted wavefunction with equal weights, but in fact the
energy denominators corresponding to the substitutions
jJi ! jAi and jJi ! jA0i will di�er by the value e�t ÿ eÿt .

In this work we propose a spin-adapted version of the
method that retains the attractive features of the pre-
vious formulation but avoids the spin contaminations
and ensures necessary spin invariances. It is natural to
suppose that the model space is de®ned by a set of
spatial electron con®gurations and therefore the model
space projector commutes with all spin operators. The
central point of the new approach consists in replacing
the spin-orbital Fock-like operators and occupation
numbers in Eqs. (20, 21) by their orbital (spin-free)
analogues:

e�s � Pwl F �ss

�� ��Pwl

D E
Nl

s

ÿ �ÿ1
; �22�

eÿs � Pwl F ÿss

�� ��Pwl

D E
2ÿ Nl

s

ÿ �ÿ1
; �23�

where

F �st � f�sa;ta � f�sb;tb; F ÿst � fÿsa;ta � fÿsb;tb; Nl
s � nl

sa � nl
sb :

�24�
Furthermore, one should avoid the dependence of an
energy denominator on the spin part of the correspond-
ing substitution operator. This requirement is easily
ful®lled if we admit the appearance of several two-body
terms in H0�J�
H0�J� �

X
r

2-occ:
in jJi

e�r Êr
r �

X
s

1-occ:
in jJi

e�s Ês
s �

1

2
eÿs ÿ e�s
ÿ �

êss
ss

� �

�
X

t
empty
in jJi

eÿt Êt
t : �25�
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Here we used the standard notation for one- and two-
particle excitation operators

Ês
s � aysaasa � aysbasb; êss

ss � 2aysaaysbasbasa : �26�
The operator (25) is completely de®ned by the set of
spatial occupancies N J

s

� 	
associated with the determi-

nant jJi. It is worth noting that Eq. (25) uses essentially
the OPT2 Ansatz for H0 [29, 30] with J -dependent
parameters:

H0�J� �
X

r

e0r�J�Êr
r ÿ

X
s

1-occ
in jJi

gsÊ
s
s 2ÿ Ês

s

ÿ �
;

e0r�J� � NJ
r e�r � 2ÿ NJ

r

ÿ �
eÿr

ÿ �
=2; gs � e�s ÿ eÿs

ÿ �
=2 :

�27�
Owing to the spin-scalar nature of H0�J� and P , no spin
contamination can occur in ®nite-order calculations.
Moreover, the new formulation enables us to replace
the basis of determinants by any spin-adapted CSF
basis. Provided that the spatial occupancy distributions
(spatial electron con®gurations) of model-space and
outer-space determinants cannot coincide, each of the
zero-order operators is spin-independent and no spin
contaminations can occur. Moreover, the invariance of
H0jJi's with respect to rotations within the subspaces
corresponding to given sets of orbital occupancies (spin
¯ips) enables us to replace the basis of determinants by
the spin-adapted CSF basis.

One readily veri®es that the energy denominator
associated with a substitution jJi ! jAi, which now
depends only upon the changes in spatial occupancies, is
still composed of the di�erences between IP-like and
EA-like entities:

hJ jH0�J�jJi ÿ hAjH0�J�jAi �
X

s: NA
s hN J

s

NJ
s ÿ NA

s

ÿ �
e�s

ÿ
X

t:
NA

t iNJ
t

NA
t ÿ NJ

t

ÿ �
eÿt ; �28�

where N A
s stands for the occupancy of the spatial orbital

s in the outer-space basis vector jAi.
As well as for the initial spin-orbital formulation, the

use of diagonal zero-order operators (25) ensures the
maximum computational simplicity of the second-order
scheme. The corresponding shortcoming consists in the
lack of invariance of the ®nite-order results under orbital
rotations conserving the model space (e.g. under the
rotations with inactive, active and secondary orbital
subspaces when the model space is complete).

3 Pilot applications

In this section we present several applications of the
spin-adapted multi-partitioning perturbation theory
restricted to second order [MPMRPT(2)] to calculations
of energy splitting between molecular electronic states
with di�erent spin multiplicities. In all cases complete
model spaces optimized by the CASSCF method [31, 32]

were used. In the contradistinction with the CASSCF
energy functional, the zero-order operators (22±25), and
therefore the resulting e�ective Hamiltonians, are not
invariant with respect to orbital rotations within inac-
tive, active and secondary subspaces, and the orbitals
should be speci®ed unambiguously. A priori it seems
advantageous to employ the CASSCF canonical MO
(CMO), which diagonalizes the inactive, active and
secondary subblocks of the generalized Fock operator
[9±11]. Taking into account that this operator coincides
with the one-particle part of the Hamiltonian written
in the generalized normal form [33] with respect to
multicon®gurational vacuum state (CASSCF wavefunc-
tion), this choice should reduce the risk of large non-
diagonal perturbations. In order to estimate the stability
of the results with respect to MO rotations, we also used
the bases of CASSCF natural MO (NMO), which were
assumed to coincide with CMO in the inactive and
secondary subspaces.

As has been pointed out in Sect. 2, the dependence of
the orbital energies fe�s ; eÿs g on the target eigenvector of
~H implies the use of iterative computational procedure.
In addition to the self-consistent results, we also present
those obtained by a simpli®ed non-iterative scheme
based on replacing the ~H eigenvectors in Eqs. (22, 23) by
corresponding solutions to the CASSCF problem.

3.1 1A1-
3B1 separations in CH2 and SiH2

The adiabatic singlet-triplet splittings in CH2 and SiH2

radicals provide a sensible test for perturbative ap-
proaches owing to a particular importance of di�erential
correlation e�ects. Although fortuitously good estimates
of the 11A1-1

3B1 energy separations are readily obtained
at the valence CASSCF level, attempts to incorporate
the dynamic correlations by second-order procedures
usually lead to a serious deterioration of results, (see [34]
and references therein).

To enable the direct comparison of the MPMRPT(2)
estimates with the full CI data of Bauschicher and
Taylor [35, 36], we used the same atomic basic sets ([2s]
H, [4s2p1d] C, and [5s3p1d] Si) and equilibrium geom-
etries. The splittings were also computed for symmetri-
cally distorted SiH2�r�Si-H� � 1:5re and 2re�.While such
splittings are not directly related to any physical char-
acteristics, this o�ered the possibility to simulate
the situations with strong con®guration mixing. Only six
electrons were correlated. The active MO subspaces were
spanned by six MOs correlating with valence atomic
orbitals. The behavior of IP- and EA-like energies is
illustrated in Fig. 1.

The results of our calculations are summarized in the
Table 1. In all cases the deviations of the MPMRPT(2)
splittings from the corresponding full CI values were less
than 1 kcal/mol, with a slight underestimation of relative
energies of singlet state. This accuracy and a regular be-
havior of the deviations stand in contrast with the poor
results obtained within the standard CASPT(2) approach
[10], which also uses the spinless Fock operator at zeroth
order. The simpli®ed version of our method employing
the CASSCF wavefunction for the computation of
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IP- and EA-like orbital energies yields essentially the
same estimates as the full (self-consistent) procedure.
This might be explained by a relatively weak interference
between the model-space and remainder correlation
e�ects: the maximal rotation angle of the target model-
space vector caused by the incorporation of second-
order terms was only 3:7��3B1 state of SiH2 at
r � Si-H� � 1:5re�. The results were also relatively stable
with respect to replacing the canonical MOs by natural
MOs.

3.2 ScH

A proper account for dynamic correlations, including
those involving the core 3sp-shell, is known to be of
crucial importance even for a qualitatively correct

description of the low-lying states of the molecules
containing transition-metal atoms. The simplest example
is provided by the ScH molecule, where the neglect of
dynamic correlations results in wrong symmetry type
and spin multiplicity of the ground state [37, 38].

We calculated the energies of the two lowest states of
ScH (11R� and 13D) at their equilibrium geometries
�re � 3:41 and 3.66 a.u. respectively, [37]). The Sc basis
comprised the (14s11p6d)/[8s7p3d] set of Watchers and
Hay with uncontracted 3p component, di�use s, p, d
functions (exponential parameters as � ap � 0:01;
ad � 0:012� and two sets of f -functions �af � 1:40;
af � 0:27� recommended by Anglada et al. [34]. For the
hydrogen atom we used the (7s3p)/[3s2p] basis from [41]
extended by a single d-manifold �ad � 0:6�. The model
spaces were obtained by the CASSCF calculations with 7
active MO arising from valence AO (4s, 3d Sc and 1s H).
Note that in order to preserve the valence-like character
of active MOs, we had to freeze the core orbitals 1r±
5r; 1p±2p (1s-3s, 2p-3p Sc) after the spin-restricted SCF
calculations. At the MPMRPT(2) step, 12 electrons
(excepting the inner 1s2s2p core of Sc) were correlated.

Both SCF and valence CASSCF methods place the
singlet state above the triplet one. The inclusion of dy-
namic correlations via the MPMRPT(2) procedure re-
verse the ordering of these states and bring the estimate
of adiabatic transition energy in a reasonable agreement
with the results of much more sophisticated and expen-
sive calculations (Table 2). Note that the singlet-triplet
splitting value is small in comparison with the total
correlation energies, and this agreement indicates a well-
balanced treatment of correlations in the states of dif-
ferent physical nature. As well as in previous examples,
the simpli®ed non-iterative scheme provides essentially
the same results as the full self-consistent calculations
and the e�ect of replacing the canonical MOs by
CASSCF NMOs is negligible.

3.3 Sc2

The relative energies of the low-lying electronic states of
the diatomic cluster of scandium are essentially governed

Fig. 1. IP-like orbital energies (®lled rectangles) and EA-like orbital
energies for the SiH2 canonical MOs. The size of the symbols for e�
and eÿ is proportional to particle �Nl

s � and hole �2ÿ Nl
s �

occupancies, respectively

Table 1. The singlet-triplet separations in CH2 and SiH2, kcal/mol

CH2 SiH2

Geometry re re 1:5re 2re

Full CIa )11.97 17.50 17.18 4.32

CASSCF )12.82 16.38 18.49 6.57

MPMRPT(2):

CMOb )12.82 17.22 17.06 3.53

CMO )12.84 17.24 17.06 3.56

NMOb )12.92 17.22 16.97 3.44

NMO )12.93 17.22 16.99 3.47

CASPT(2)c )15.43 15.12 15.63 3.64

CASPT(2)d )12.95 ¸ )13.20 16.70 ¸ 16.84

a [35, 36]
b Simpli®ed non-iterative scheme ( e�s ; e

ÿ
s

� 	
were de®ned with re-

spect to the CASSCF wavefunctions)
c Non-degenerate multicon®guration perturbation theory with
CASSCF zero-order wavefunctions, [10]
d The zero-order Fock-like operator was modi®ed in order to en-
large the energy gap between active and secondary orbitals, [34]

Table 2. Correlation and relative energies for the X 1R� and 13D
states of the ScH molecule

Correlation energy, eV DE, eV

X 1R� 13D

SCF 0 0 )0.761
CASSCF 1.29 0.73 )0.198
MPMRPT(2):

CMOa 8.85 7.88 0.216

CMO 8.86 7.88 0.227

NMOa 8.85 7.88 0.211

NMO 8.86 7.88 0.222

MRD CI + extrpb 9.52 8.40 0.34

MCPFc 0.19

a Simpli®ed non-iterative scheme
b Extrapolation to full CI, [38]
c Modi®ed coupled pair functional method, [37]
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by correlation e�ects. A peculiarity of this system
consists in that the high-spin ground state �X 5Rÿu � is
strongly favored by the dynamic correlations, while
the low-lying singlet and triplet states are much less
correlated [38±40].

We used the same Sc basis set as in the calculations
on ScH. Two electronic states were studied, the ground
X 5Rÿu state and the state 13Du, which appears to be the
lowest one according to the valence-like MCSCF ap-
proach [44]. The equilibrium geometries were taken from
[44]. Active spaces were spanned by 12 MO correlating
with 4s and 3d orbitals of Sc atoms. As well as in the
previous case, only the inner (1s2s2p) core was excluded
from correlation treatment.

At the spin-restricted SCF level, the 15Rÿu state is
characterized by a rather high energy with respect to the
13Du one (Table 3). The valence-like CASSCF calcula-
tions reduced the gap but the state ordering remained
incorrect. The subsequent MPMRPT(2) treatment rec-
ti®ed the error and yielded the X 5Rÿu ÿ 13Du excitation
energy values, which are in good agreement with the
most trustworthy estimate of AÊ keby and Pettersson [44].
It is interesting to note that the di�erential dynamic
correlation energy was as large as 1 eV. The rotations of
target eigenvectors associated with the incorporation of
dynamic correlations were not negligible �7� and 6:5� for
the X 5Rÿu and 13Du states respectively) and corresponded
to the increase in the weights of dominant con®gura-
tions.

3.4 Cu2

The structure of the ground �X 1R�g � and the lowest
excited �a3R�u � electronic states of the Cu2 cluster can be
qualitatively described in terms of bonding and anti-
bonding combinations of 4s-orbitals in the presence of
[Ar]3d10 atomic cores. However, the neglect of dynamic
correlations involving these rather di�use and high-
energy cores leads to very poor quantitative results. We
computed the adiabatic X 1R�g ±a3R�u splitting using the
experimental equilibrium geometries [45] and standard
[6s5p4d2f] ANO basis set [45]. At the SCF level the

singlet-triplet separation was estimated to be 0.941 eV,
i.e. less than half of the well-established experimental
value (1.903 eV, [45]). The CASSCF calculations with
two active MO �4srg; 4sr�u�, which included the right-left
correlations but completely ignored the dynamic ones
lowered the singlet energy only by 0.252 eV, providing
the energy splitting 1.193 eV (the triplet state is not
a�ected by right-left correlations). The MPMRPT(2)
method starting with the CASSCF model spaces and
correlating 38 electrons (including the 3s, 3p and 3d
shells) yielded the splitting estimate with an accuracy ca
0.1 eV (2.025 and 2.026 for simpli®ed and complete
procedures respectively). The interference of dynamic
and right-left correlations manifested itself in favoring
the bonding structure of the ground state (the formal
bond order increased from the CASSCF value 0.938 to
0.967).

4 Conclusions

A spin-adapted version of the state-selective multiparti-
tioning perturbation theory is presented. As well as
in the original (spin-orbital) formulation [22], several
partitionings of the total Hamiltonian into a zero-order
part and a perturbation are employed simultaneously.
Each zero-order operator H0�J� is completely de®ned by
the set of spatial orbital occupancies of the correspond-
ing basis function jJi (Slater determinant or CSF),
commutes with the total spin and is degenerate within
each subspace associated with a de®nite spatial electron
con®guration. Owing to these properties of zero-order
operators, the eigenvectors of the second-order e�ective
Hamiltonian are pure spin functions; therefore, the
method o�ers the possibility of qualitatively correct
treatment of electronic states with di�erent spin multi-
plicities.

Avoiding the spin contaminations and spurious
dependence of calculation results on the choice of the
reference z axis, the novel formulation retains the main
attractive features of the conventional state-selective
multipartitioning MRPT. The energy denominators
are still composed of di�erences between IP-like and
EA-like one-electron energies; the separability of sec-
ond-order results for complete model spaces is ensured,
provided that no orbital is delocalized between the
separated subsystems. As was demonstrated in a series
of pilot applications, the method does not su�er from
illde®ned energy denominators even in calculations
with relatively large complete model spaces.

The second-order estimates of energy separations
between the electronic states with di�erent spin multi-
plicities were obtained for several systems. The accuracy
of the results appears to be encouraging, taking into
account the low computational cost. One should note an
adequate description of di�erential correlation e�ects
associated with 3d-shells, which is known to be a
particularly di�cult task for ab initio methods. While
the method is not invariant under MO rotations, the
calculated energy di�erences were found to be relatively
stable with respect to transformations from canonical to
natural active MO basis sets.

Table 3. Correlation and relative energies for the X 5Rÿu and 13Du

states of the Sc2 molecule

Correlation energy, eV DE, eV

X 5Rÿu 13Du

SCF 0 0 )1.857
CASSCF 2.06 0.75 )0.541
MPMRPT(2):

CMOa 17.92 15.57 0.494

CMO 17.95 15.59 0.507

NMOa 17.94 15.58 0.505

NMO 17.96 15.59 0.515

ACPFb 0.391

a Simpli®ed non-iterative scheme
b Averaged coupled pair functional method with CASSCF re-
ference function, [40]

274



Acknowledgements. This work was inspired by a discussion with
B.O. Roos. We thank J.P. Daudey and a referee for their critical
readings of the manuscript. AZ acknowledges the ®nancial support
from the UniversiteÂ P. Sabatier (Toulouse). The Laboratoire de
Physique Quantique is UniteÂ Mixte de Recherche (UMR 5626) du
CNRS.

Appendix

To obtain an Hermitian e�ective Hamiltonian, it is
convenient to employ the wave operator obeying the
isometry requirements [46]

PXyXP � P ; �PXP �y � PXP : �29�
Let us ®rst consider the model space part of the Bloch
equation

PHXP � PXP ~H �30�
and split it into ``symmetrized'' projections on model
space vectors fjJig
jJihJ jHXP � PHXjJihJ j � jJihJ jXP ~H � PXP ~H jJihJ j;

jJi 2 LP : �31�
When introducing the J -dependent partitioning (6±8)
and switching o� the perturbations, one immediately
arrives at the expression (11) for ~H �0�. The extraction of
linear terms yields

~H �1� � 1

2

X
J

�jJihJ jV �J�P � PV �J�jJihJ j� � PHP ÿ ~H �0� :

�32�
At n-th order �n > 1� we get

jJihJ j X�n�;H0�J�
h i

P � P X�n�;H0�J�
h i

jJihJ j

� jJihJ j V �J�X�nÿ1�P ÿ
Xnÿ1
m�0

X�m�P ~H �nÿm�
 !

� P V �J�X�nÿ1� ÿ
Xnÿ1
m�0

X�m�P ~H �nÿm�
 !

jJihJ j : �33�

Since PX�0�P and fH0�J�g; jJi 2 LP are Hermitian oper-
ators, the l.h.s. of Eq. (33) is anti-Hermitian. Adding to
Eq. (33) its Hermitian conjugate, one eliminates the
commutators and obtains the expression for ~H �n� � ~H �n�y
in terms of lower-order entities:

~H �n� � 1

4

X
J

jJihJ j G�n�J � G�n�yJ

� ��
� G�n�J � G�n�yJ

� �
jJihJ j

�
;

G�n�J � PV �J�X�nÿ1�P ÿ
Xnÿ1
m�1

PX�m�P ~H �nÿm� �34�

(cf. [46, 47]). The multipartitioning perturbative treat-
ment of the Q-P block of Eq. (1) analogous to that
described in the Sect. 2 gives

Q X�n�;H0�J�
h i

jJihJ j � Q

 
V �J�X�nÿ1�:

ÿ
Xnÿ1
m�1

X�m� ~H �nÿm�
!
jJihJ j : �35�

Equations (34, 35) together with the order-by-order
form of the isometry conditions (28)

PX�n�P � ÿ 1
2

Xnÿ1
m�1

PX�m�yX�nÿm�P �36�

[43] completely de®ne the multipartitioning perturbation
expansions for the Hermitian e�ective Hamiltonian and
the corresponding wave operator. Note that the second-
order correction

~H �2� � 1

2

X
JJ 0
jJihJ jH Q

eJ ÿ H0�J� �
Q

eJ 0 ÿ H0�J 0�
� �

H jJ 0ihJ 0j

�37�
coincides with the symmetrized form of Eq. (13), in
analogy with the conventional quasidegenerate pertur-
bation theory [1].
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